Subject: Generator Replacement Bid Package
SDP Contract No. B-055c of 2018/19

Location: William Rowen Elementary School
6801 N. 19th St.
Philadelphia, Pennsylvania 19126

This Addendum, dated October 9, 2019, shall modify and become part of the Contract Documents for the work of this project. Any items not mentioned herein, or affected by, shall be performed strictly in accordance with the original documents.

Revise as indicated below or by attachment

1 Specifications

1.1 262416 - PANELBOARDS
DELETE Articles 2.02.H.6 through 2.02.H.09.

2 Drawings

2.1 Drawing M-401: MODIFY keynote 4 to include a “wall-mounted remote fill box (Morrison 715 Series or equivalent)”.

2.2 Drawing M-401: MODIFY keynote 5 to define the whistle cap as “Morrison 922 or equivalent”.

2.3 Drawing M-401: MODIFY keynote 6 to define the emergency vent cap as “Morrison 244OM or equivalent”.

2.4 Drawing M-401: MODIFY keynote 8 to define the remote level indicator as “weatherproof”.

2.5 Drawing M-401: ADD keynote 11 – “Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.” And ADD keynote 11 hexagon symbol on fill piping adjacent to the generator.

2.6 Drawing M-401: Relocate piping, show wall-mounted remote fill box, and show a section view indicator as shown on attached drawings.

2.7 Drawing M-501: Re-arrange views and ADD section view as shown on attached drawings.
2.8 Drawing E-102: ADD note and path of ingress to southwest boiler room stairwell to indicate “Exterior Access” and “Anticipated path of equipment rigging”. See attached drawings.

2.9 Drawing E-102: ADD note and leader to northwest area of the boiler room to indicate "Potential limited exterior access via former coal shoot." See attached drawings.

3 Contractor questions:

N/A

END OF ADDENDUM #001

Attachments: Revised Drawing Set (8)
GENERAL NOTES:

1. FOR INFORMATION CONTACT: WILLIAM ROWEN ELEMENTARY SCHOOL
 6801 N. 19TH STREET, PHILADELPHIA, PA 19126

2. THE WORK HEREIN CONTAINS MATERIALS AND LABOR ITEMS WHICH ARE SUBJECT TO DISCONTINUITY AND/or DISCONTINUITY OF SERVICES AS REQUIRED BY LOCAL CODES, REGULATIONS OR THE OWNER.

3. ALL PLUMBING AND MECHANICAL INSTALLATION WORK SHALL COMPLY WITH THE DRAWINGS AND SPECIFICATIONS.

4. ACTIVITIES HAVE BEEN COMPLETED.

5. APPLICATION.

6. ANY EQUIPMENT, MATERIALS, LABOR OR SERVICES NOT SPECIFIED IN THE CONTRACT DOCUMENTS SHALL BE INCLUDED IN THE COST TO THE OWNER.

7. ALL NEW EQUIPMENT IS SHOWN IN APPROXIMATE POSITION. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING CONDITIONS AND DIMENSIONS AT THE SITE PRIOR TO SUBMITTING BID AND BEFORE START OF CONSTRUCTION.

8. PROVIDE A FULL TANK OF DIESEL FUEL AT SUBSTANTIAL COST.

9. BETWEEN DISSIMILAR METALS TO INHIBIT GALVANIC CORROSION.

10. LOCAL CODES SHALL SUPERCEDE INTERNATIONAL BUILDING CODE.

11. IRON OR STEEL VALVES, EQUIPMENT FOUNDATIONS, AND ALL OTHER ITEMS THAT ARE NOT LABELED WITH THE MANUFACTURER’S PARTS AND/or MATERIALS MANUFACTURING IDENTIFICATION NUMBER BE LABELED WITH THE MANUFACTURER’S PARTS AND/or MATERIALS MANUFACTURING IDENTIFICATION NUMBER.

12. PRIME PAINT ALL PIPING AND VALVES PRIOR TO INSULATION.

13. PROTECT ALL PIPING FROM DAMAGE DURING INSTALLATION.

14. FIELD VERIFY THE ROUTING AND TIE SUPPORTS AS INDICATED IN SPECIFICATIONS.

15. THE CONTRACTOR SHALL FIELD VERIFY THE ROUTING AND TIE SUPPORTS AS INDICATED IN SPECIFICATIONS.

16. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING CONDITIONS AND DIMENSIONS AT THE SITE PRIOR TO SUBMITTING BID AND BEFORE START OF CONSTRUCTION.

17. THE CONTRACTOR SHALL OBTAIN ALL REQUIRED PERMITS AND TURN OFF ALL IMPACTED UTILITIES BEFORE STARTING WORK.

18. THE CONTRACTOR SHALL OBTAIN AND PROVIDE OWNER’S REPRESENTATIVE WITH AIR MANAGEMENT PERMIT PRIOR TO WORK STARTING.

19. THE CONTRACTOR SHALL OBTAIN PROJECT CLOSEOUT.

20. THE SCHOOL DISTRICT OF PHILADELPHIA MAY RESTRICT WORK REPRESENTATIVE WITH AIR MANAGEMENT PERMIT PRIOR TO WORK STARTING.

21. THE CONTRACTOR IS RESPONSIBLE TO LABEL AND/OR PAINT ALL PIPING AND VALVES AS INDICATED.

22. CONTRACTORS RESPONSIBILITY: CONTRACTORS WHO PROVIDE MATERIALS AND LABOR FOR THE INSTALLATION OF EQUIPMENT OR MATERIALS ARE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE TESTING OF FAILED COMPONENTS THAT HAVE FAILED.

23. FAILURE EVALUATION: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL REPLACEMENTS: MANUFACTURERS MUST HAVE REPLACEMENT PARTS BASED ON PREVAILING UNION RATES OF THE TRADE PERFORMING THE ORIGINAL INSTALLATION.

24. WARRANTY: MANUFACTURER IS RESPONSIBLE FOR ALL LABOR AND MATERIAL COST RESPONSIBILITY SHALL FALL TO INSTALLING CONTRACTOR.

25. MANUFACTURER PRODUCTS THAT DO NOT MEET THE INDICATED OR SPECIFIED CODES, REGULATIONS, STANDARDS, OR SPECIFICATIONS: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL COSTS.

26. CONDITIONS AFFECTING THIS PROJECT AND COORDINATE WITH OTHER DISCIPLINES.

27. COORDINATION IF ANY EQUIPMENT OF ALTERNATE LOCATIONS.

28. THE SCHOOL DISTRICT OF PHILADELPHIA MAY RESTRICT WORK.

29. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING CONDITIONS AND DIMENSIONS AT THE SITE PRIOR TO SUBMITTING BID AND BEFORE START OF CONSTRUCTION.

30. THE CONTRACTOR SHALL OBTAIN ALL REQUIRED PERMITS AND TURN OFF ALL IMPACTED UTILITIES BEFORE STARTING WORK.

31. CONSTRUCTION DEBRIS MUST BE REMOVED FROM OCCUPIED SPACES AT THE END OF EACH WORK DAY.

32. DISPOSE OF PER ALL APPLICABLE CODES & SAFETY REQUIREMENTS.

33. MINIMAL DISRUPTION TO ADJACENT OCCUPIED AREAS.

34. CONTRACTORS RESPONSIBILITY: CONTRACTORS WHO PROVIDE MATERIALS AND LABOR FOR THE INSTALLATION OF EQUIPMENT OR MATERIALS ARE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE TESTING OF FAILED COMPONENTS THAT HAVE FAILED.

35. FAILURE EVALUATION: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL REPLACEMENTS: MANUFACTURERS MUST HAVE REPLACEMENT PARTS BASED ON PREVAILING UNION RATES OF THE TRADE PERFORMING THE ORIGINAL INSTALLATION.

36. WARRANTY: MANUFACTURER IS RESPONSIBLE FOR ALL LABOR AND MATERIAL COST RESPONSIBILITY SHALL FALL TO INSTALLING CONTRACTOR.

37. MANUFACTURER PRODUCTS THAT DO NOT MEET THE INDICATED OR SPECIFIED CODES, REGULATIONS, STANDARDS, OR SPECIFICATIONS: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL COSTS.

38. CONDITIONS AFFECTING THIS PROJECT AND COORDINATE WITH OTHER DISCIPLINES.

39. COORDINATION IF ANY EQUIPMENT OF ALTERNATE LOCATIONS.

40. THE SCHOOL DISTRICT OF PHILADELPHIA MAY RESTRICT WORK.

41. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING CONDITIONS AND DIMENSIONS AT THE SITE PRIOR TO SUBMITTING BID AND BEFORE START OF CONSTRUCTION.

42. THE CONTRACTOR SHALL OBTAIN ALL REQUIRED PERMITS AND TURN OFF ALL IMPACTED UTILITIES BEFORE STARTING WORK.

43. CONSTRUCTION DEBRIS MUST BE REMOVED FROM OCCUPIED SPACES AT THE END OF EACH WORK DAY.

44. DISPOSE OF PER ALL APPLICABLE CODES & SAFETY REQUIREMENTS.

45. MINIMAL DISRUPTION TO ADJACENT OCCUPIED AREAS.

46. CONTRACTORS RESPONSIBILITY: CONTRACTORS WHO PROVIDE MATERIALS AND LABOR FOR THE INSTALLATION OF EQUIPMENT OR MATERIALS ARE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE TESTING OF FAILED COMPONENTS THAT HAVE FAILED.

47. FAILURE EVALUATION: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL REPLACEMENTS: MANUFACTURERS MUST HAVE REPLACEMENT PARTS BASED ON PREVAILING UNION RATES OF THE TRADE PERFORMING THE ORIGINAL INSTALLATION.

48. WARRANTY: MANUFACTURER IS RESPONSIBLE FOR ALL LABOR AND MATERIAL COST RESPONSIBILITY SHALL FALL TO INSTALLING CONTRACTOR.

49. MANUFACTURER PRODUCTS THAT DO NOT MEET THE INDICATED OR SPECIFIED CODES, REGULATIONS, STANDARDS, OR SPECIFICATIONS: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL COSTS.

50. CONDITIONS AFFECTING THIS PROJECT AND COORDINATE WITH OTHER DISCIPLINES.

51. COORDINATION IF ANY EQUIPMENT OF ALTERNATE LOCATIONS.

52. THE SCHOOL DISTRICT OF PHILADELPHIA MAY RESTRICT WORK.

53. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING CONDITIONS AND DIMENSIONS AT THE SITE PRIOR TO SUBMITTING BID AND BEFORE START OF CONSTRUCTION.

54. THE CONTRACTOR SHALL OBTAIN ALL REQUIRED PERMITS AND TURN OFF ALL IMPACTED UTILITIES BEFORE STARTING WORK.

55. CONSTRUCTION DEBRIS MUST BE REMOVED FROM OCCUPIED SPACES AT THE END OF EACH WORK DAY.

56. DISPOSE OF PER ALL APPLICABLE CODES & SAFETY REQUIREMENTS.

57. MINIMAL DISRUPTION TO ADJACENT OCCUPIED AREAS.

58. CONTRACTORS RESPONSIBILITY: CONTRACTORS WHO PROVIDE MATERIALS AND LABOR FOR THE INSTALLATION OF EQUIPMENT OR MATERIALS ARE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE TESTING OF FAILED COMPONENTS THAT HAVE FAILED.

59. FAILURE EVALUATION: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL REPLACEMENTS: MANUFACTURERS MUST HAVE REPLACEMENT PARTS BASED ON PREVAILING UNION RATES OF THE TRADE PERFORMING THE ORIGINAL INSTALLATION.

60. WARRANTY: MANUFACTURER IS RESPONSIBLE FOR ALL LABOR AND MATERIAL COST RESPONSIBILITY SHALL FALL TO INSTALLING CONTRACTOR.

61. MANUFACTURER PRODUCTS THAT DO NOT MEET THE INDICATED OR SPECIFIED CODES, REGULATIONS, STANDARDS, OR SPECIFICATIONS: MANUFACTURER SHALL BE RESPONSIBLE FOR ALL COSTS.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arch</td>
</tr>
<tr>
<td>B</td>
<td>Building</td>
</tr>
<tr>
<td>C</td>
<td>Control</td>
</tr>
<tr>
<td>D</td>
<td>Drain</td>
</tr>
<tr>
<td>E</td>
<td>Electric</td>
</tr>
<tr>
<td>F</td>
<td>Fire</td>
</tr>
<tr>
<td>G</td>
<td>Gas</td>
</tr>
<tr>
<td>H</td>
<td>Heat</td>
</tr>
<tr>
<td>I</td>
<td>Intake</td>
</tr>
<tr>
<td>J</td>
<td>Junction</td>
</tr>
<tr>
<td>K</td>
<td>Knockout</td>
</tr>
<tr>
<td>L</td>
<td>Liquid</td>
</tr>
<tr>
<td>M</td>
<td>Manifold</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>O</td>
<td>Outside</td>
</tr>
<tr>
<td>P</td>
<td>Piping</td>
</tr>
<tr>
<td>Q</td>
<td>Quarter</td>
</tr>
<tr>
<td>R</td>
<td>Radiator</td>
</tr>
<tr>
<td>S</td>
<td>Suction</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>V</td>
<td>Ventilation</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
</tr>
</tbody>
</table>

Ductwork

<table>
<thead>
<tr>
<th>Ductwork</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Branch</td>
</tr>
<tr>
<td>C</td>
<td>Control</td>
</tr>
<tr>
<td>D</td>
<td>Drain</td>
</tr>
<tr>
<td>E</td>
<td>Exhaust</td>
</tr>
<tr>
<td>F</td>
<td>Fitting</td>
</tr>
<tr>
<td>G</td>
<td>Grille</td>
</tr>
<tr>
<td>H</td>
<td>Header</td>
</tr>
<tr>
<td>I</td>
<td>Intake</td>
</tr>
<tr>
<td>J</td>
<td>Junction</td>
</tr>
<tr>
<td>K</td>
<td>Knockout</td>
</tr>
<tr>
<td>L</td>
<td>Liquid</td>
</tr>
<tr>
<td>M</td>
<td>Manifold</td>
</tr>
<tr>
<td>N</td>
<td>Neutral</td>
</tr>
<tr>
<td>O</td>
<td>Outside</td>
</tr>
<tr>
<td>P</td>
<td>Piping</td>
</tr>
<tr>
<td>Q</td>
<td>Quarter</td>
</tr>
<tr>
<td>R</td>
<td>Radiator</td>
</tr>
<tr>
<td>S</td>
<td>Suction</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>V</td>
<td>Ventilation</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
</tr>
</tbody>
</table>

Piping, Fittings, and Valves

<table>
<thead>
<tr>
<th>Piping</th>
<th>Fittings</th>
<th>Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

General Notes

- **NOTICE**: The information on this sheet is subject to change and should be verified by the contractor before proceeding with construction.

- **PRECAUTIONS**: All work shall be performed in accordance with the project specifications and contract documents.

- **SCHEDULE**: Completion of this work is expected by the date specified in the contract documents.

- **INTERFACES**: The contractor shall coordinate with all trades to ensure compatibility and proper functionality of systems.

- **QUALITY CONTROL**: All materials and workmanship shall meet the required standards as specified in the contract documents.

- **PERMITS AND INSPECTIONS**: All work shall comply with local codes and regulations.

- **RETENTION**: The contractor shall retain all materials and equipment until approval for their reuse is obtained.

- **CONTRACTOR'S DUTIES**: The contractor shall be responsible for the proper installation and connection of all systems.

- **COMPLETION**: Work shall be completed in accordance with the project specifications.

- **PROJECT TEAM**: All members of the project team shall work together to ensure a successful project outcome.

Lines and Reference Symbols

- **VIEW TITLE**: Each view shall be clearly labeled with the appropriate title.

- **DESIGNATION (IN. W.G.)**: Designations shall be specified in inches of water gauge.

- **NO DATE REVISION**: This sheet is not subject to revision.

- **DRAWN BY**: The sheet was drawn by [Name] on [Date].

- **PROJECT TITLE**: Philadelphia, PA 19126

- **M-001**: The sheet is part of a series of project drawings.

- **DATE**: The sheet was prepared on [Date].

- **SHEET 2 OF 8**: This sheet is one of eight sheets in the project set.

- **PHILADELPHIA**: The project is located in Philadelphia, PA.

- **WILLIAM BERNARD HENRY SCHOOL**: The school is located at [Address].

- **AUTHORIZATION**: The sheet is authorized for use by the project team.

- **REVISION HISTORY**: The sheet has not been revised.

- **SHEET 2 OF 8**: The sheet is part of a larger project document set.

- **M-001**: The sheet is identified by the project number M-001.
COMBUSTION AIR SCHEDULE

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>AREA (SQ IN)</th>
<th>FREE AREA (SQ IN)</th>
<th>ENLARGED (SQ IN)</th>
<th>FREE (% of ENLARGED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>100%</td>
</tr>
</tbody>
</table>

General Notes:
- It is recommended to review the combustion generator schedule for single openings.
- The schedule includes the required opening for different fuel types and sizes.
- Ensure proper sizing and positioning of the combustion air system to meet the safety and performance requirements.
- Consult local codes and standards for specific installation requirements.

Required Items:
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide anchors and clamps as necessary to support critical silencer muffler from overhead structure.
- Around edges of penetration, provide insulated motor operated damper, fixed structure with flap cap.
- Provide 304 stainless steel insulation jacket for the length of the generator drain at vertical elbow nearest generator.
- Provide generator manufacturer furnished flexible bellows towards water trap.
- Provide emergency vent piping with weatherproof cap (Morrison 244OM or equivalent) up to roof line and 5' towards storage tank.
- Provide fuel oil fill piping and pitch at 1/8" per linear foot down to overfill prevention valve on storage.
- Remote fill box (Morrison 715 Series or equivalent) at least 24 inches from any building openings at the same reuse.
- Natural gas branch down to generator. Cap piping at branch from main.
- Repair masonry wall penetration to match existing.
- Provide full length of generator exhaust piping, insulation, critical silencer, supports, and accessories.
- Remove natural gas branch from storage tank.
- Provide emergency vent mounted, emergency vent in accordance with NFPA 86-2010.
- Provide EMERGENCY VENT MOUNTED, EMERGENCY VENT (BTUH)
- Dimension each mod (IN x IN) associated with MOD.
- Provide standpipe with standing fill port with screen, weather tight window well.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide an overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
- Provide overfill prevention valve (Morrison 9095AA or equivalent) to protect fuel oil storage tank.
1. All electrical work shall be done in strict accordance with the National Electrical Code, 2008 Edition, and all governing local codes, laws, and/or requirements of the applicable section of the National Electrical Code (NEC), unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

2. All circuit breakers, panel boards, and control panels shall have the required rating interrupting capacity equal to or greater than the available short-circuit current at its supply terminal.

3. All switches and circuit breakers shall be identified via nameplate. Lighting and receptacle circuits to be in separate conduits, unless otherwise noted.

4. All ancillary components such as auxiliary contacts, contactors, relays, coils, etc. shall work together reliably. This shall include, but not be limited to, any components that will work together reliably. All switchgear and contactors shall be approved and listed.

5. Architectural features shown on these drawings are for background information only. Refer to architectural and structural drawings for actual standpoint of understanding all field conditions. Whenever a conflict occurs where conduits exposed or concealed pass through structural joints, the contractor shall bid on the most expensive method of protection, unless otherwise shown on plans.

6. All circuits shall contain a ground conductor, whether or not it is indicated on the drawing. Wall & floor penetrations shall be by the electrical contractor. Provide all power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

7. The electrical contractor shall ensure that no mechanical ductwork or piping is located over any conduit runs.

8. Wall & floor penetrations shall be by the electrical contractor. Provide all power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

9. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

10. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

11. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

12. The electrical contractor shall visit the site of work prior to preparing his bids. Wall & floor penetrations shall be by the electrical contractor. Provide all power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

13. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

14. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

15. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

16. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

17. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

18. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

19. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

20. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

21. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

22. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

23. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

24. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

25. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.

26. All power and lighting conduits are shown diagrammatically. Exact runs shall be determined by the electrical contractor in the field, except where otherwise shown on plans. Exposed conduit shall be supported from walls and/or ceiling by approved means. Provide conduit sleeves and seals for all conduits penetrating floors or ceilings. All electrical work shall be properly grounded and shall meet all requirements of the applicable section of the NEC, unless otherwise noted. In addition, all such conduits shall contain a separate ground conductor (size as req’d). All control wiring shall be a minimum of #16 AWG.
KEYED DEMOLITION NOTES

1. Completely remove the existing generator, transfer switch, emergency panelboard, disconnect, and all associated electrical equipment.
2. Clean existing housekeeping pad and extend as required to match new generator footprint.
3. Disconnect all existing branch circuits from the panelboard, tag each branch circuit prior to demolition.
4. Demolish the existing feeder from the ATS to the junction box located above ATS.
NEW 100A, 2P, AUTOMATIC TRANSFER SWITCH (ATS)

NEW 120/240V, 1PH, 15kW DIESEL GENERATOR SET W/ SUBBASE FUEL TANK

NEW 100A, 1PH, 120/240V PANEL 'EL'

120V POWER FOR MOTOR DAMPER.

BUILDING ENGINEER'S OFFICE AREA

NEW GENERATOR REMOTE ANNUNCIATOR

(NEW) BOILER

(NEW) BOILER

(NEW) BOILER

NG METER AREA

BOY'S TOILET (ABOVE)

STORAGE JANITOR'S CLOSET (ABOVE)

WASH ROOM (ABOVE)

WINDOW WELL

FORMER COAL STORAGE

BOILER ROOM

SUMP PIT

ANTICIPATED PATH OF EQUIPMENT RIGGING

EXTERIOR ACCESS

POTENTIAL LIMITED EXTERIOR ACCESS VIA FORMER COAL SHOOT

KEYED NEW WORK NOTES

- EXTEND ALL EXISTING NORMAL - EMERGENCY, AND EMERGENCY ONLY BRANCH CIRCUITS TO NEW PANELBOARD 'EL'. WIRE SIZE TO MATCH EXISTING. MINIMUM SIZE IS 2 #12 AWG, 1 #12 AWG GROUND IN 3/4" MT.
- CLEAN EXISTING HOUSEKEEPING PAD AND EXTEND AS REQUIRED TO MATCH NEW GENERATOR FOOTPRINT.
- NEW DUPLEX NEMA 5-20R SERVICE RECEPTACLE
- ADDENDUM #1
- NO DATE REVISION
- 04 OCT 2019
- SHEET 7 OF 8

ELECTRICAL NEW WORK ENLARGED PLAN