The Impact of School Facility Investments on Students and Homeowners: Evidence from Los Angeles

Julien Lafortune¹ David Schönholzer²

¹Public Policy Institute of California ²Institute for International Economic Studies, Stockholm University

May 2023

This Paper

- 1 Study largest school construction program in US history:
 - Los Angeles Unified School District (LAUSD) 2002-2017
 - Analyze \$9.2 billion in spending on new schools
- 2 Use variation in construction timing to estimate:
 - Student cognitive and behavioral outcomes
 - Real estate prices in new school attendance areas
 - Spillovers on nearby untreated schools and neighborhoods
- 3 Use simple model to assess valuation of spending:
 - Use relative house price difference to identify MWTP
 - Informs under-/over-provision of school infrastructure

Preview of Findings

- 1 Student gains at new school facilities:
 - Robust student test score gains
 - Large effects on student attendance and some effort effects
 - Smaller indirect effects on students at nearby existing schools
 - Facility quality as main mechanism
- 2 Robust capitalization in real estate market:
 - House prices \uparrow 6% when new school built
 - Little evidence of anticipatory effects, spillovers
- 3 Facility spending valued (more than) 1:1
 - Implied household WTP: 1.6
 - Implies prior underprovision and welfare gains

Outline of Presentation

1 Context: School Capital Spending and LAUSD Program

- 2 Students Effects Data and Research Design Student Results
- Real Estate Capitalization
 Data and Research Design
 Capitalization Results
 Cost-benefit Analysis

LAUSD in the L.A. Metro Area

- 2nd largest district in U.S.
- 747,009 students at peak
- Mostly non-white district
- Serves 26 cities:
 - City of L.A.
 - Some gateway cities
 - Unincorporated areas
 - Not e.g. Santa Monica
- Underachieving:
 - 0.2 SD below CA in Math
 - 0.25 SD in ELA

School Construction and Enrollment: LAUSD 1940-2012

Multi-Decade Period of Capital Investment

Comparison of LA to Other Large Districts

30 largest districts ordered by pre-1997 expenditures

Distribution of School Facility Age

New School Constructions

- School facilities in LAUSD:
 - Zero new schools 1975-1995 despite growing need
 - Starting 1997: voter approval of several facility bonds
- Pre-building boom conditions:
 - 1 Poor facility quality
 - 2 Overcrowding
 - 3 Multi-track schools
- Effects at new schools:
 - 1 Direct facility improvements
 - 2 Overcrowding and multi-track elimination
 - 3 Reallocation of resources
- Data to study building boom:
 - 7.5M administrative student records
 - 560k assessor records on residential house sales

Multi-calendar Schools

New School Site Selection Process

- Select old schools most...
 - 1 overcrowded
 - 2 multi-track calendar
 - ⇒ 109 schools identified (black dots)
- Assign search areas nearby:
 - Red: elementary schools
 - Blue: middle schools
 - Green: high schools
- Select sites from areas:
 - Feasibility study
 - CEQA
 - Property purchase
 - Public tender
 - Construction (1-3 years)

New School Projects

	Mean	Median	Min	Max
Total cost (million USD)	81.9	56.5	11.1	578.7
New student seats	1,050	800	162	3,440
New classrooms	40.3	32	6	130
Building SQFT	100,585	70,115	12,507	391,840
Completion year	2008	2008	2002	2012
Site designation to completion (yrs)	5.18	5	2	9
Construction to completion (yrs)	2.12	2	1	5
New School Codes	1.26	1	1	5
Total New School Campuses Total New School Codes	114 144			

New and Old School Sites in LAUSD

Outline

1 Context: School Capital Spending and LAUSD Program

2 Students Effects Data and Research Design Student Results

3 Real Estate Capitalization Data and Research Design Capitalization Results Cost-benefit Analysis

Empirical Framework

Problem: matriculation at new schools (negatively) selected

- Identification strategy 1: use variation in *timing* of student switching to new school
 - Examine *within-student* changes in outcome over time, before versus after being at a new school
 - \Rightarrow Exploit variation induced by construction timing
 - ⇒ Key assumption: non-switching students make good counterfactuals to switching students
- Identification strategy 2: Using school residential assignment of students instead of actual school attendance
 - Examine changes of students in new attendance zones
 - $\Rightarrow\,$ Eliminates concern that students who might benefit most are the ones that switch

Estimation Sample

Two treatments:

- 1 Direct effects on students attending new schools
- 2 Indirect effects on students who stay behind at old schools, yet experience *peer outflows* to new facilities

Baseline estimation: examine direct effects using entire sample

- Results robust to excluding "stayers"
- Later, examine indirect effects on "stayers" (dropping treated students)

Summary Statistics

	All LAUSD	Never Treated	Always Treated	Switchers	Stayers
Free/reduced-price lunch	0.80	0.78	0.79	0.94	0.89
Hispanic/Latino	0.73	0.71	0.85	0.89	0.82
Black	0.11	0.12	0.05	0.06	0.08
White	0.09	0.10	0.03	0.03	0.05
Asian	0.04	0.04	0.04	0.01	0.03
Parent: any college	0.27	0.28	0.24	0.16	0.20
English spoken at home	0.33	0.35	0.27	0.18	0.22
Predicted test score	-0.25	-0.23	-0.27	-0.38	-0.33
Math score ($t = -1$)				-0.34	-0.16
ELA score ($t = -1$)				-0.52	-0.37
N student-years	7,317,019	6,495,040	122,045	699,934	1,353,762

School Attendance Boundaries in 2004

School Attendance Boundaries in 2008

School Attendance Boundaries in 2012

Outline

1 Context: School Capital Spending and LAUSD Program

2 Students Effects

Data and Research Design Student Results

3 Real Estate Capitalization Data and Research Design Capitalization Results Cost-benefit Analysis

Results: Math Test Scores (Grades 2-7)

Results: ELA Test Scores (Grades 2-11)

Results: Attendance (Grades K-12)

Results: Student Effort (Grades K-5)

Indirect Treatment at Existing Schools

- Also effects on students who "stay behind" at old schools:
 - *Stayer*: student for whom $\geq 10\%$ of cohort switch to new
 - Estimate analogous event-study design
 - \Rightarrow Informs role of overcrowding on directly treated students
- School-level changes for stayers: School-level changes table
 - Overcrowding↓
 - Calendar: convert back to 9-month ([†])
 - 3 Peer effects [↑] (small)
 - 4 Class size ↓ (small)
- Findings:
 - We find robust effects for English and attendance
 - Weak evidence for math and no effort effects

Mechanisms

- Key question: What drives student gains at new schools?
- Main mechanisms for switchers: School-level changes table
 - 1 Calendar change / overcrowding: \downarrow
 - Effects small for stayers: \Rightarrow not primary mechanism
 - Class size:
 ^(small)
 - 3 Peer effects: ↓ (small)
 - 4 Teacher quality: \downarrow (small)
 - Younger, less experienced teachers
 - Lower value added
 - 5 Direct facility effects: ↑

Mechanisms: Facility Quality

	Math	ELA	Attendance	Effort
Pooled (switchers only)	0.035*** (0.012)	0.014*** (0.005)	3.692*** (0.765)	0.031* (0.019)
By share permanent classrooms:				
Low share permanent	0.037***	0.015***	4.505***	0.059***
High share permanent	(0.013) 0.020 (0.017)	(0.005) 0.006 (0.007)	(0.799) 4.434*** (0.835)	(0.018) -0.045 (0.029)
p-value	0.34	0.22	0.93	0.00
By prior building age:				
Below median age	0.025**	0.012**	4.754***	-0.000
Above median age	(0.012) 0.047*** (0.017)	(0.005) 0.015** (0.006)	(0.804) 5.296*** (0.811)	(0.020) 0.056** (0.025)
p-value	0.19	0.62	0.50	0.03

Outline

1 Context: School Capital Spending and LAUSD Program

- 2 Students Effects Data and Research Design Student Results
- 3 Real Estate Capitalization Data and Research Design Capitalization Results Cost-benefit Analysis

Capitalization of School Quality

Large improvements in school **physical** and **educational** quality, *but at great cost*

How are improvements capitalized into housing market?

- How do residents value school quality? More general amenities?
- Use analogous design to examine house price effects
 - $\Rightarrow\,$ Compare within-neighborhood changes in prices, relative to timing of new school construction

 \Rightarrow Use extent of capitalization to assess valuation and provision

Neighborhood boundaries

Outline

1 Context: School Capital Spending and LAUSD Program

- 2 Students Effects Data and Research Design Student Results
- 3 Real Estate Capitalization Data and Research Design Capitalization Results Cost-benefit Analysis

Results: House Prices (1 km buffer)

Results: House Prices

	Ne	Neighborhood Fixed Effects				Repeat Sales	
	(1)	(2)	(3)	(4)	(5)	(6)	
New School	0.060*** (0.018)	0.059*** (0.016)	0.044*** (0.011)	0.055*** (0.015)	0.045*** (0.013)	0.059*** (0.016)	
Yr FEs	v	v	V	Х	v	Х	
Month FEs	x	x	x	X	x	Х	
Prop Controls	x	x	x	x	Y	V	
New Sch Zones w/in 1km	Х	X X	х	х	X X	X X	
All LAUSD Number of sales R2	X 505,781 .82	255,481 .79	161,775 .78	161,782 .75	87,523 .91	87,551 .9	

Table: DiD estimates: Ln(House Price)

Note: Standard errors clustered by neighborhood.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Outline

1 Context: School Capital Spending and LAUSD Program

2 Students Effects Data and Research Design Student Results

3 Real Estate Capitalization

Data and Research Design Capitalization Results Cost-benefit Analysis

Interpreting Household Valuation

Two common approaches to compare costs and benefits:

- 1 Real estate capitalization approach
 - e.g. Barrow and Rouse (2004), Cellini et al. (2010)
 - \oplus Pro: Captures benefits beyond academic achievement
 - $\rightarrow~$ safety, health, non-test score outcomes, etc
 - \bigcirc Con: Revealed preferences may not fully capture benefits
 - ightarrow Parental valuation of effectiveness may be limited
 - $ightarrow\,$ e.g. Rothstein (2006), Abdulkadiroglu et al. (2017)
- 2 Later life earnings approach
 - e.g. Chetty et al. (2011), Kline and Walters (2016)
 - Pro: Direct estimation of earnings impacts
 - $\rightarrow~$ sidesteps issues of limited parental valuation
 - ⊖ Con: Only considers academic (test score) benefits

Joint Evaluation of Welfare Effects

Program component	Value
Program cost	
Households in LAUSD Share treated households Per treated household cost Total program cost	1.52 million 0.328 \$18,430 \$9.17 billion
Program benefit	
 Housing capitalization approach Estimated house price in treated areas Total real estate valuation Marginal value of public funds (capitalization) 	\$28,201 \$14.06 billion 1.53
2. Later life earnings approach Implied later life earnings per treated household Total earnings valuation Marginal value of public funds (earnings)	\$7,782 \$3.88 billion 0.42
3. Hybrid approach Share housing valuation due to academic achievement Share future earnings captured in academic valuation Program benefit per treated household Total benefits Marginal value of public funds	0.22 0.76 \$29,786 \$14.85 billion 1.62

Conclusions

- 1 Public expenditures in school infrastructure are productive:
 - Modest test score effects; large attendance improvements
 - Overcrowding / calendar changes generated indirect gains
 - External validity: many large urban or low-income districts
- 2 School infrastructure likely underprovided in many schools:
 - Robust real estate capitalization equals or surpasses costs
 - LAUSD breakthrough after CA local bond threshold eased
- 3 Future earnings approach underestimates valuation
 - But HH lack preferences/information to value effectiveness
 - Housing capitalization may capture only part of value